free counter
Tech

The mitochondrial NAD+ transporter SLC25A51 is really a fasting-induced gene

Highlights

  • The mitochondrial NAD+ transporter Slc25a51 is really a fasting-induced gene.

  • Liver Slc25a51 is regulated by circadian rhythm and is really a target of BMAL1.

  • Reduced Slc25a51 expression suppressed mitochondrial NAD+ levels and SIRT3 activity in hepatocytes and the liver.

  • Reduced Slc25a51 expression suppressed oxygen consumption rate in hepatocytes.

  • Reduced hepatic Slc25a51 expression caused fatty liver and hypertriglyceridemia in mice.

Abstract

Introduction

Nicotinamide adenine dinucleotide (NAD) is really a coenzyme central to metabolism and energy production. NAD+-dependent deacetylase sirtuin 3 (SIRT3) regulates the acetylation degrees of mitochondrial proteins which are involved with mitochondrial homeostasis. Fasting up-regulates hepatic SIRT3 activity, which requires mitochondrial NAD+. What’s the mechanism, then, to move more NAD+ into mitochondria to sustain enhanced SIRT3 activity during fasting?

Objective

SLC25A51 is really a recently discovered mitochondrial NAD+ transporter. We tested the hypothesis that, during fasting, increased expression of SLC25A51 is necessary for enhanced mitochondrial NAD+ uptake to sustain SIRT3 activity. As the fasting-fed cycle and circadian rhythm are closely linked, we further tested the hypothesis that SLC25A51 is really a circadian regulated gene.

Methods

We examined Slc25a51 expression in the liver of fasted mice, and examined its circadian rhythm in wild-type mice and the ones with liver-specific deletion of the clock gene BMAL1 (LKO). We suppressed Slc25a51 expression in hepatocytes and the mouse liver using shRNA-mediated knockdown, and then examined mitochondrial NAD+ levels, SIRT3 activities, and acetylation degrees of SIRT3 target proteins (IDH2 and ACADL). We measured mitochondrial oxygen consumption rate using Seahorse analysis in hepatocytes with minimal Slc25a51 expression.

Results

We discovered that fasting induced the hepatic expression of Slc25a51, and its own expression showed a circadian rhythm-like pattern that has been disrupted in LKO mice. Reduced expression of Slc25a51 in hepatocytes decreased mitochondrial NAD+ levels and SIRT3 activity, reflected by increased acetylation of SIRT3 targets. Slc25a51 knockdown reduced the oxygen consumption rate in intact hepatocytes. Mice with minimal Slc25a51 expression in the liver manifested reduced hepatic mitochondrial NAD+ levels, hepatic steatosis and hypertriglyceridemia.

Conclusions

Slc25a51 is really a fasting-induced gene that’s necessary for hepatic SIRT3 functions.

Abbreviations:

ACADL (Acyl-CoA dehydrogenase-long chain), BMAL1 (Brain and Muscle ARNT-Like 1), CLOCK (Clock Circadian Regulator), IDH2 (isocitrate dehydrogenase-mitochondrial), NAD (nicotinamide adenine dinucleotide), NAMPT (nicotinamide phosphoribosyltransferase), shRNA (short hairpin RNA), SIRT3 (sirtuin 3), TG (triglyceride), WAT (white adipose tissue)

Keywords

To learn this article completely you will have to create a payment

References

    • Imai S.
    • Armstrong C.M.
    • Kaeberlein M.
    • Guarente L.

    Transcriptional silencing and longevity protein Sir2 can be an NAD-dependent histone deacetylase.

    Nature. 2000; 403: 795-800

    • Lin S.J.
    • Defossez P.A.
    • Guarente L.

    Dependence on NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae.

    Science. 2000; 289: 2126-2128

    • Revollo J.R.
    • Grimm A.A.
    • Imai S.

    The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells.

    J Biol Chem. 2004; 279: 50754-50763

    • Hirschey M.D.
    • Shimazu T.
    • Goetzman E.
    • Jing E.
    • Schwer B.
    • Lombard D.B.
    • et al.

    SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation.

    Nature. 2010; 464: 121-125

    • Ahn B.H.
    • Kim H.S.
    • Song S.
    • Lee I.H.
    • Liu J.
    • Vassilopoulos A.
    • et al.

    A job for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis.

    Proc Natl Acad Sci U S A. 2008; 105: 14447-14452

    • Onyango P.
    • Celic I.
    • McCaffery J.M.
    • Boeke J.D.
    • Feinberg A.P.

    SIRT3, a human SIR2 homologue, can be an NAD-dependent deacetylase localized to mitochondria.

    Proc Natl Acad Sci U S A. 2002; 99: 13653-13658

    • Lombard D.B.
    • Alt F.W.
    • Cheng H.L.
    • Bunkenborg J.
    • Streeper R.S.
    • Mostoslavsky R.
    • et al.

    Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation.

    Mol Cell Biol. 2007; 27: 8807-8814

    • Schwer B.
    • Bunkenborg J.
    • Verdin R.O.
    • Andersen J.S.
    • Verdin E.

    Reversible lysine acetylation controls the experience of the mitochondrial enzyme acetyl-CoA synthetase 2.

    Proc Natl Acad Sci U S A. 2006; 103: 10224-10229

    • Huang J.Y.
    • Hirschey M.D.
    • Shimazu T.
    • Ho L.
    • Verdin E.

    Mitochondrial sirtuins.

    Biochim Biophys Acta. 1804; 2010: 1645-1651

    • Yang H.
    • Yang T.
    • Baur J.A.
    • Perez E.
    • Matsui T.
    • Carmona J.J.
    • et al.

    Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival.

    Cell. 2007; 130: 1095-1107

    • Peek C.B.
    • Affinati A.H.
    • Ramsey K.M.
    • Kuo H.Y.
    • Yu W.
    • Sena L.A.
    • et al.

    Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice.

    Science. 2013; 342: 1243417

    • Levine D.C.
    • Hong H.
    • Weidemann B.J.
    • Ramsey K.M.
    • Affinati A.H.
    • Schmidt M.S.
    • et al.

    NAD(+) controls circadian reprogramming through PER2 nuclear translocation to counter aging.

    Mol Cell. 2020; 78e7

    • Nakahata Y.
    • Sahar S.
    • Astarita G.
    • Kaluzova M.
    • Sassone-Corsi P.

    Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1.

    Science. 2009; 324: 654-657

    • Ramsey K.M.
    • Yoshino J.
    • Brace C.S.
    • Abrassart D.
    • Kobayashi Y.
    • Marcheva B.
    • et al.

    Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis.

    Science. 2009; 324: 651-654

    • Luongo T.S.
    • Eller J.M.
    • Lu M.J.
    • Niere M.
    • Raith F.
    • Perry C.
    • et al.

    SLC25A51 is really a mammalian mitochondrial NAD(+) transporter.

    Nature. 2020; 588: 174-179

    • Kory N.
    • Uit de Bos J.
    • van der Rijt S.
    • Jankovic N.
    • Gura M.
    • Arp N.
    • et al.

    MCART1/SLC25A51 is necessary for mitochondrial NAD transport.

    Sci Adv. 2020; 6eabe5310

    • Girardi E.
    • Agrimi G.
    • Goldmann U.
    • Fiume G.
    • Lindinger S.
    • Sedlyarov V.
    • et al.

    Epistasis-driven identification of SLC25A51 as a regulator of human mitochondrial NAD import.

    Nat Commun. 2020; 11: 6145

    • Davila A.
    • Liu L.
    • Chellappa K.
    • Redpath P.
    • Nakamaru-Ogiso E.
    • Paolella L.M.
    • et al.

    Nicotinamide adenine dinucleotide is transported into mammalian mitochondria.

    Elife. 2018; 7

    • Ouyang Y.
    • Bott A.J.
    • Rutter J.

    Maestro of the SereNADe: SLC25A51 orchestrates mitochondrial NAD.

    Trends Biochem Sci. 2021; 46: 348-350

    • Ziegler M.
    • Monne M.
    • Nikiforov A.
    • Agrimi G.
    • Heiland I.
    • Palmieri F.

    Welcome to the household: identification of the NAD(+) transporter of animal mitochondria as person in the solute carrier family SLC25.

    Biomolecules. 2021; 11

    • Molusky M.M.
    • Ma D.
    • Buelow K.
    • Yin L.
    • Lin J.D.

    Peroxisomal localization and circadian regulation of ubiquitin-specific protease 2.

    PLoS One. 2012; 7e47970

    • Balsalobre A.
    • Damiola F.
    • Schibler U.

    A serum shock induces circadian gene expression in mammalian tissue culture cells.

    Cell. 1998; 93: 929-937

    • Molcan L.

    Time distributed data analysis by Cosinor.

    2019https://doi.org/10.1101/805960 ()

    • Guan D.
    • Xiong Y.
    • Trinh T.M.
    • Xiao Y.
    • Hu W.
    • Jiang C.
    • et al.

    The hepatocyte clock and feeding control chronophysiology of multiple liver cell types.

    Science. 2020; 369: 1388-1394

    • Pizarro A.
    • Hayer K.
    • Lahens N.F.
    • Hogenesch J.B.

    CircaDB: a database of mammalian circadian gene expression profiles.

    Nucleic Acids Res. 2013; 41: D1009-D1013

    • Hughes M.E.
    • DiTacchio L.
    • Hayes K.R.
    • Vollmers C.
    • Pulivarthy S.
    • Baggs J.E.
    • et al.

    Harmonics of circadian gene transcription in mammals.

    PLoS Genet. 2009; 5e1000442

    • Feldman J.L.
    • Dittenhafer-Reed K.E.
    • Kudo N.
    • Thelen J.N.
    • Ito A.
    • Yoshida M.
    • et al.

    Kinetic and structural basis for acyl-group selectivity and NAD(+) dependence in sirtuin-catalyzed deacylation.

    Biochemistry. 2015; 54: 3037-3050

    • Yang W.
    • Nagasawa K.
    • Munch C.
    • Xu Y.
    • Satterstrom K.
    • Jeong S.
    • et al.

    Mitochondrial sirtuin network reveals dynamic SIRT3-dependent deacetylation in reaction to membrane depolarization.

    Cell. 2016; 167e21

    • Kendrick A.A.
    • Choudhury M.
    • Rahman S.M.
    • McCurdy C.E.
    • Friederich M.
    • Van Hove J.L.
    • et al.

    Fatty liver is connected with reduced SIRT3 activity and mitochondrial protein hyperacetylation.

    Biochem J. 2011; 433: 505-514

    • TeSlaa T.
    • Teitell M.A.

    Ways to monitor glycolysis.

    Methods Enzymol. 2014; 542: 91-114

    • Howitz K.T.
    • Bitterman K.J.
    • Cohen H.Y.
    • Lamming D.W.
    • Lavu S.
    • Wood J.G.
    • et al.

    Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan.

    Nature. 2003; 425: 191-196

    • Haigis M.C.
    • Sinclair D.A.

    Mammalian sirtuins: biological insights and disease relevance.

    Annu Rev Pathol. 2010; 5: 253-295

    • Houtkooper R.H.
    • Pirinen E.
    • Auwerx J.

    Sirtuins as regulators of metabolism and healthspan.

    Nat Rev Mol Cell Biol. 2012; 13: 225-238

    • Finkel T.
    • Deng C.X.
    • Mostoslavsky R.

    Recent progress in the biology and physiology of sirtuins.

    Nature. 2009; 460: 587-591

    • Kim A.
    • Koo J.H.
    • Lee J.M.
    • Joo M.S.
    • Kim T.H.
    • Kim H.
    • et al.

    NRF2-mediated SIRT3 induction protects hepatocytes from ER stress-induced liver injury.

    FASEB J. 2022; 36e22170

    • Gao P.
    • You M.
    • Li L.
    • Zhang Q.
    • Fang X.
    • Wei X.
    • et al.

    Salt-induced hepatic inflammatory memory plays a part in cardiovascular damage through epigenetic modulation of SIRT3.

    Circulation. 2022; 145: 375-391

    • Filling C.
    • Keller B.
    • Hirschberg D.
    • Marschall H.U.
    • Jornvall H.
    • Bennett M.J.
    • et al.

    Role of short-chain hydroxyacyl CoA dehydrogenases in SCHAD deficiency.

    Biochem Biophys Res Commun. 2008; 368: 6-11

    • Le Couteur D.G.
    • Solon-Biet S.M.
    • Parker B.L.
    • Pulpitel T.
    • Brandon A.E.
    • Hunt N.J.
    • et al.

    Nutritional reprogramming of mouse liver proteome is dampened by metformin, resveratrol, and rapamycin.

    Cell Metab. 2021; 33e4

    • Kim H.
    • Wei J.
    • Song Z.
    • Mottillo E.
    • Samavati L.
    • Zhang R.
    • et al.

    Regulation of hepatic circadian metabolism by the E3 ubiquitin ligase HRD1-controlled CREBH/PPARalpha transcriptional program.

    Mol Metab. 2021; 49101192

    • Hirschey M.D.
    • Shimazu T.
    • Jing E.
    • Grueter C.A.
    • Collins A.M.
    • Aouizerat B.
    • et al.

    SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome.

    Mol Cell. 2011; 44: 177-190

    • Nogueiras R.
    • Habegger K.M.
    • Chaudhary N.
    • Finan B.
    • Banks A.S.
    • Dietrich M.O.
    • et al.

    Sirtuin 1 and sirtuin 3: physiological modulators of metabolism.

    Physiol Rev. 2012; 92: 1479-1514

Article Info

Publication History

Published online: August 03, 2022

Accepted: July 29, 2022

Received: April 11, 2022

Identification

DOI: https://doi.org/10.1016/j.metabol.2022.155275

Copyright

2022 Elsevier Inc. All rights reserved.

ScienceDirect

Access this short article on ScienceDirect

Read More

Related Articles

Leave a Reply

Your email address will not be published.

Back to top button

Adblock Detected

Please consider supporting us by disabling your ad blocker